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Introducing transverse vertices into the gauge technique 

C N Parker 
Department of Physics, University of Tasmania, Hobart, Tasmania, Australia 7001 

Received 8 December 1983 

Abstract. We present a new algorithm for extending the gauge technique beyond the 
simplest version. The algorithm introduces transverse corrections in an intrinsically non- 
perturbative way and represents a significant improvement on previously advocated 
methods. For scalar electrodynamics the resulting gauge technique equation is analysed 
in the infrared and ultraviolet limits. 

1. Introduction 

The gauge technique (GT) (Salam 1963, Delbourgo and West 1977a, Delbourgo 1979) 
is a non-perturbative self-consistent approximation method for calculating gauge field 
theory Green functions. It can be applied to any gauge theory (and some non-gauge 
theories) and has the virtue of satisfying the gauge identities at every stage of the 
calculation. The simplest (or ‘zeroth-order’) version of the GT combines the gauge 
identities, Kallin-Lehmann spectral representation and the Schwinger-Dyson equation 
for the source two-point function. These ingredients suffice to determine the purely 
longitudinal components, GL, of the photon amputated, connected amplitudes, G 
(Delbourgo and West 1977a), and the exact infrared ( IR)  behaviour of the source 
two-point functions in scalar (SED) and spinor (QED) electrodynamics (Delbourgo and 
West 1977b), and vector electrodynamics (Delbourgo 1977). In each case the results 
concur with those obtained by other methods (Gorkov 1956, Ball et a1 1978, Hagen 
1963, Kibble 1968). Further, the ultraviolet (uv) behaviour of the electron propagator 
agrees with that found by Baker and Johnson (Khare and Kumar 1978). Unfortunately 
the zeroth-order GT (in general) only respects gauge covariance in these asymptotic 
limits (Slim 1981a, Delbourgo et a1 1981), due to the neglect of transverse vertices in 
the analyses. This omission also means that the GT (in lowest order) cannot provide 
a suitable explanation for every phenomenon associated with a gauge theory. For 
example, the anomalous magnetic moment of the electron in QED is associated with 
the transverse vertex u,,,k”. The neglect of transverse contributions is the main criticism 
that can be levelled at the simplest version of the GT. 

There have been several attempts to extend the GT beyond the lowest order. The 
structure of the full transverse contribution has been found in two-dimensional space- 
time (Gardner 198 1, Delbourgo and Thompson 1982), enabling exact representations 
for G, = Sr,S, Gpy = Sr,,S, etc. Delbourgo and co-workers have suggested that the 
form of the transverse contribution in four dimensions could be obtained by analysing 
the Schwinger-Dyson equation for the full three-point amplitude G,. The resulting 
solution would be used (instead of G!J in a revised GT analysis of the equation for 
the two-point function, leading to a refined approximation of the true propagator. It 
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is implicit in this approach that a spectral ansatz for GPy is available; however, spectral 
representations for the full G,,.,.+ with n > 1 are unknown at present and hence this 
method is not viable. Slim (1981b) has advocated a simpler version of the idea based 
on the spectral representation for GL. It amounts to an amalgamation of the GT with 
perturbation theory (PT) and only employs longitudinal amplitudes. An approximate 
transverse vertex for QED, which yields the correct I R  and uv behaviours of the electron 
propagator, has recently been obtained (King 1983). The analysis relies solely on PT, 

begins with an ad hoc modification of the O(e2) transverse vertex, and is only valid in 
the I R  and uv limits. King stresses the need to introduce tranverse vertices into the 
GT in order to treat properly the problem of overlapping divergences. 

In Q 2 we derive a new, non-perturbative, approximation to the full three-point 
transverse amplitude, GZ. Because G,, in QED, is a linear combination of eight 
transverse covariants and four longitudinal covariants, we choose to work with SED 

where G, consists of one longitudinal term and one transverse term. Section 3 describes 
the introduction of the new expression into the GT and results in a refined GT equation 
for the spectral function. The I R  and uv properties of this equation are discussed in 
0 4. Section 5 summarises the article and discusses some topics for future research. 

2. The transverse three-point amplitude CE 

We begin by truncating the Schwinger-Dyson equation for G, (in SED) in a manner 
consistent with O(e2) n. Neglecting any terms that start at O(e4) or higher implies 
that the zeroth-order GT ansatz (which consists of replacing the full G,,,,,+,? by Gb,,,,,,J 
can be employed on the right-hand side (RHS)? to obtain 

( P f 2  - m W , ( p ' ,  PI 

=(p'+p),A(p)-2ie2 a4tg,,D,""(t)Gf;(p- t , p )  J 
-ie2 I a4r ( 2 p ' -  t ) ,D~"( t )G~, (p ' -  t, t ;  p ,  k ) ,  (1) 

where from here on k = p l - p ,  A denotes the meson propagator, and we replace the 
full photon propagator by the undressed version Do as is usual in the GT. Adding (1) 
to the corresponding equation for G,(-p, -p ' )  and employing the charge conjugation 
properties 

G,(P ' ,P )  = -G,(-P, - p ' ) ,  G,,(P', 4 ' :  P, 4 )  = Gpy(-P9 4 ' ;  -P', 4 )  

results in 

w2 - P') G, (P', P) 

= ( p ' + p ) , k " G E ( p ' ,  p)+2ie2 d'tg,,D,""(t)(k +t)' J 
J x G:,(p', r ;  p ,  k + t ) + i e Z  

- ( 2 p ' -  t),Gk,(p'- t, t ;  p ,  k)I,  

d4r Dh"(t)[(2p +t),Gb,(p', t ;  p +t ,  k )  

(2) 
+ Gh, ," is given by a spectral weighting over the Born terms contributing to G,, Iln. Since the ansatz 
contains lowest-order PT, any corrections to it must start at least at O(e2) .  
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where 

d W2 p( W’) 
(P’ +PI,, 

d W2 p( W’) ( 2 P ’  + 4’>,(2P + 4 ) Y  

2875 

(3) 

and p denotes the spectral function of the scalar meson. We will determine GE by 
projecting it out of ( 2 ) .  

Introducing the ‘pseudo’ projection operatorst L,, and TGY given by 

we define the longitudinal and transverse parts of G, with respect to L and T by 

This knowledge, together with the definition 

GT,  = G, - G:, 

then leads to the relations 

for some F. However, taking the divergence of ( 7 a )  and noting that both GZ and GL 
satisfy the gauge identity 

k’”G,(P’, P )  = 0) - 4 P ‘ )  

Y P ’ ,  P) = 0. 

yields 

Applying T,, to ( 2 )  results in 

+ Projection operators are usually considered to be symmetric under interchange of indices. However, it is 
easy to verify that the non-symmetric L and T satisfy the usual properties of projection operators: L2 = L, 
T 2 =  7, L T =  TL=O, L + T = l .  
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( p 2 -  W2)(p’2- -r,:2(P’? W2) PI W), 
d W 2 p ( W 2 )  

where T v z ( p ’ ,  p (  W) denotes the O(e2)  FT expression for r, for mesons of mass W This 
is an important equation. Equation (3) stipulates that the full longitudinal three-point 
amplitude is a weighted sum over the lowest-order FT longitudinal amplitude. 
Analogously, (8) gives the full transverse three-point amplitude as a weighted sum over 
the lowest-order transverse amplitude in FT. Note that replacing p(W2) in ( 8 )  with 
6( W2 - m2)  trivially reproduces O(e2)  FT for all possible values of p and p ‘ ,  in contrast 
to the vertex used by King. It is also worth noting that the factor ( ~ ’ ~ - p ’ )  in the 
denominator of GT can be removed (if so desired) by performing the t integral, which 
gives rise to an identical factor in the numerator. Further, the expression for GT given 
in (8) satisfies the differential Ward identity, which can be stated as? 

G:(P, PI = 0. 

3. The refined gauge technique equation 

Truncating the Schwinger-Dyson equation for the propagator so that terms starting 
at O(e6) or higher are neglected results in 

2,’ = ( P 2  - mi)A(p) - ie2 J a4q (2P - ~)”~,”w‘(q)G,(P - PI 

+ e 4  d4t a4t’ g,yoo”“(t’)o,”~(t)G,L,(p- t -  t’ ,  t’, t ;  p ) ,  (9) 

or equivalently 

[ W 2  - mi + n ( p 2 ,  w’)]. 
O =  J d W 2 p ( W 2 )  ( P 2 -  w2> 

It is important to realise that II in (IO) is not ‘,he quantity that would result from an 
O(e4) PT calculatio? of the meson self energy II. For instance, the diagram in figure 
1 contributes to II but not to II. However, to O(e2),  II=fi. Following the GT 

prescription, we take the imaginary part of (10) and obtain 

Figure 1. A diagram that contributes to the fourth-order perturbation theory expression 
for the meson self energy, but not to the gauge technique quantity II. 

t This version of the identity is obtained from the usual statement, a,+A(p) = -G,(p,  p ) ,  by using the Lehmann 
spectral representation of A(p) and arriving at a,+A(p)= -Gb(p ,  p ) .  
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where, in terms of Feynman diagrams, 7r is given in figure 2. Nakanishi’s method 
(Nakanishi 1971) and dimensional regularisation will be employed to calculate Im n. ate nLipz,wl) = 

Figure 2. The Feynman diagram expansion of n. nL(nT) denotes the contribution to n 
arising from GZ and G:,(G:), n = nL+nT. Transverse vertices are enclosed in broken 
line boxes. 

For simplicity the Fermi gauge ( a  = 1) will be used from here on. Relegating mathemati- 
cal details to the appendix, the calculation yields 
Im n ( p 2 ,  w’) 

1 
= T ~ ~ B ( P ~ -  w’> 2 ( w 4 - p 4 ) + 7 7  U 

where throughout 77 = e’/ 1677’. In (12) ,  f denotes the Spence function or dilogarithm 
(Abramowitz and Stegun 1965) which is defined by 

and y denotes Euler’s constant. The B(p’ -9  W2)I  term originates from the last diagram 
associated with (A7) and is given by 

(2p2 1-2 w’ - q2)(3p2 + w2 - 2q’) 
(q ‘+  w 2 - p ’ )  

I= - - - -  2 T y 2  P 1;’- w ) 2  dq2 ( 2 p R  + 

4 p R - ( q 2 +  W*-p’)  
4 p R  + ( q 2  + W 2 - p 2 )  

xln 1 
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where p = (p’)”’ is a scalar, R is given by 

4pR = { [ 2 ( p 2  - W’) - q 2 ] [ 2 ( p 2  + W 2 )  - q2”’}’I2A(p2, W 2 ,  q’), 

and A here denotes the triangle function 

A(p2, W2, q 2 ) = [ ( q 2 - p 2 -  W2)2-4p2W2]I’2. 

Having calculated Im II, the only remaining quantity to be determined in (1 1) is 
Re I I ( p 2 ,  p’).  As we shall presently show it will suffice to calculate Re I12(p’, p’),  which 
results in 

e’ReII,(p’, m 2 ) = - q  ( 2 p 2 + m ’ )  lim-- ySln(47r) [ ( 1 - 2  ( 2 - 1 )  

Equation (1 1) must be ‘renormalised’ before it can be considered as an equation 
for p. Because (9) is only valid to O(e4) in PT, any infinities of O(e6)  or higher will 
not be cancelled internally. Hence the renormalisation procedure is only expected to 
work to O(e4)  and any other divergences in (1 1) can be legitimately removed by hand. 
Expanding the LHS of (1 1) to O(e4) and noting that 

n4(m2,  m’) +am: = o 
(because the GT can reproduce FT), the only divergence that must be considered is the 
one present in ReII,(p2,p2)-ReII,(m2, m’). Hence the correct form of the LHS of 
(11) is 

1 
lim-- 
1-2 ( 2  - 1) .nP(P’)(P2-  -777) +67r77 

The R H S  of (1 1 )  has the form 

lim-- 1 y +In( s) + C ]  +finite terms 
1-2 ( 2  - 1 )  

d W 2  p(  W’) 

where the finite constant C has been included to take account of the ambiguity in the 
infinite part of the expression. The only legitimate divergence is found by replacing 
p( W’) by 6( W 2  - m’) leading to 

w2 p(  w2){ 67r772(p4 - w4) [ c - In ($)I +finite terms 
P’ 

+67rq2 

Combining (15) and (16) yields the finite, linear equation for p, 

- ( p 2  + 3 W2)2  [ 2 In (6) In (9) +3f ( f ) ] 
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p2/9  d W2 p( W2)I 
2 r ( p 2 -  W*) . +6(p2-9m2) 

m 

The value of C will be determined by demanding that (17) reproduce the well known 
I R  behaviour of p. Recall that the zeroth-order GT is valid in the I R  regime. 

4. Asymptotic behaviours of p 

Due to the algebraic complexity of (17) we shall only analyse its behaviour in asymptotic 
regimes. In the I R  limit ( p 2 +  m2), (17) reduces to 

( p 2  - m2)( 1 - 777)p(p2) = -477 {’I d W’ p( W2)[1 -(3C +4)77]. (18) 
m 

with C = 1, (18) becomes the Delbourgo-West equation (Delbourgo and West 1977b) 
which gives rise to the standard expression 

p ( p * ) - ,  constant(p* - m2)-’-47, p 2  + m’. (19) 

x = p 2 /  m2, y = W2/m2, 4(x)  = “P(P2), 

In terms of the dimensionless variables 

(17) can be approximated in the uv by 

where rm2J(x,  y )  = I ( $ ,  W’) and I is given in (13). Adopting the uv ansatz 

(21) 4(x) - .U“( 1 + b In x), 

and knowing that each integral on the RHS of (20) is dominated by the upper end 
point, and that 

a = - l  + k V ,  

means that every integral in (20) (except the one involving J )  can be done analytically. 
In every case except one, the x“(1n x)“ behaviour, with n = 2,3,4, exactly cancels 
internally, resulting in terms of the form given in (21). The single integral that does 
not conform is the one involving the (x + y )  In y term; it gives rise to a x“(1n x)’ term. 
The (x + y )  In y term is present because the replacement e’+ e2(m2)2-’ was made in 
the 21-dimensional space-time calculations (12) and (14). In other words, m2 was the 
parameter introduced to maintain a dimensionless coupling constant in 21 dimensions. 
If W* had been used instead, the (x + y )  In y term would not arise, and (21) would 
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lead to a self-consistent equationt. Further, this replacement would not affect the I R  

results since in that limit W 2 + m 2  and the term vanishes. Because the GT has been 
used throughout this article, and the GT deals with mesons of mass W, it is reasonable 
to use W 2  rather than m 2  in the redefinition e’+ e’( W2)2-f  for arbitrary dimensions. 
In this circumstance the (x + y )  In y term in ( 2 0 )  can be dropped. 

From here on, we confine the analysis to the case of small 7. This restriction, 
together with the knowledge that b and k need only be determined to leading order, 
implies that only those integrands in ( 2 0 )  that d o  not contain ( x - y ) - ‘  need be 
considered. If an integrand contains (x - y ) - ’ ,  the result will not contain an  ( a  + 1)-“ 
term and  hence the contribution of that integral will be suppressed by a positive integral 
power of 7. This explains why the integral involving J can be neglected. 

With the modifications described ( 2 0 )  is transformed into a self-consistent equation 
for b and k. Solving the equation yields the values 

k = - 2 + 0 ( 7 ) ,  b = -677’ + O ( q 3 ) ,  ( 2 2 )  
and hence the uv behaviour of 4 is given by 

4(x) - x-’””( 1 - 6 q 2  In x), 

4(x)-(x- 1)-1-~”, x +  1. 

X+CO. 

Compare this with the I R  behaviour, (19) 

Equation ( 2 3 )  implies that the dominant uv behaviour is given by a power law and  is 
obtainable by using the zeroth-order GT. The inclusion of transverse amplitudes only 
yields subdominant corrections to the power law behaviour. 

5. Conclusion 

We have described a new algorithm for introducing transverse corrections into the GT. 

The algorithm has several advantages over previously advocated schemes. 
(1) I t  is intrinsically non-perturbative. 
( 2 )  It yields an  expression (which exactly agrees with O(e2) PT everywhere) for the 

full three-point transverse amplitude and  this expression has the same structure as the 
GT expression for the full three-point longitudinal amplitude. 

( 3 )  In principle it yields a propagator which is exact to O(e4) and is valid in all 
momentum regimes. 

(4) What is more, it is usable. 
The method gives the exact I R  and correct uv behaviours of the spectral function. 
However, (8) only represents an approximation to the true GE because it was derived 
by using only the longitudinal amplitudes Gb and Gby in a truncated Schwinger-Dyson 
equation. Transverse vertices must be considered in intermediate momentum regimes 
if the GT is to provide gauge covariant solutions everywhere. 

The current work could be used as the basis for several investigations. One 
possibility is to use our G, ( = (3) +(8)) in a non-perturbative calculation of the charge 
form factor. Note that our  G, contains the contribution of the O ( e 2 )  triangle diagram 
that is usually used in the calculation. Another possibility is to perform a numerical 

t A numerical analysis of the integral involving J has revealed that only terms of the form given in (21) are 
present. 
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analysis of (17) and obtain a refined approximation to p for all p 2 .  This is a worthwhile 
topic since it is only in subasymptotic regimes where the effects of transverse contribu- 
tions become evident. 

For QED the zeroth-order GT only respects gauge covariance in the I R  and uv limits 
(Delbourgo et a1 1981). The most important application of the new algorithm will be 
to determine whether the transverse corrections introduced via the method are sufficient 
to ensure the gauge covariance of the GT solutions for S and G,,. This question is 
currently being investigated and the results will be reported elsewhere. 
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Appendix 

It is the purpose of this appendix to present a calculation of Im ll. With the notation 
that a short vertical bar through a propagator denotes the imaginary part of that 
propagator, we have (from figure 2) 

= 47~77~e(p~  - w2)[p4- w4 - 2p2 W’ ln(p2/ w2)l/p2, 

= 7q20(p2-  W 2 )  6(p2- W2)(p2+3 W2) 
Y - In (S)] 

+3(p2- W2)(3p2 + 19 W2)-2p2(3p2 + 2  W2) ln(p2/ W’) /(4p’), (A3) 

and combining these expressions yields 

Im nL(p2, w’> = T 7 7 e ( p 2  - w’) 2( w4--‘) U 
6(p2- W2)(p2+3W2) 

+ ( p 2 -  W2)(25p2+73 W2)-6p2(p2+6W’) ln(p2/ W2) / 4  /p2. (A4) i n  
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= ~ ~ ’ t ? ( p ’ -  W’) 1 y - l n ( Z ) ]  4 ~ m ’  

+2(p’- W‘)(4p’- W’)+(p2- W )  2 2 ( P 2  + W’) 
P 2  

p 2 -  wz 
- p 2 ( 3 p 2 +  w’) In 

+ ( p 2 -  W2)(21p’-19W’)-2p2(3p’-2W’)ln(p2/ W 2 )  / ( 4 p 2 ) ,  (A6) I 
t 

( p 2  - W*)3 

P 2  
= T T 2 e ( p 2 -  w2) ( w 2 - p 2 ) ( i 3 p 2 + 3 3 w z ) +  

+(5p6+23p4w2+3p2w4t w6> i P 2 -  W’) 
P 4  

x In (q)} /p’ + t?(p2 - 9 W’)I, 

and combining these expressions results in 

Im II’( p 2 ,  W’) = .irT20( p 2  - W’) 6( p 2  - W2)(3p2 + W’) 

y - l n  ( - 4yi72)] +( W2-p2)(33p2 + 129 W’) 
1 

1 - 2  (2 - I )  

-2p2(5p2+6W2)ln 

+ e ( p 2 - 9 w 2 ) z .  

Z and f are given in the text. 
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